[1]陈凯奇 石宇雄△ 陈敬恒 何达东.步态周期垂直力下股骨转子间骨折股骨近端防旋髓内钉内固定的生物力学特征[J].中国中医骨伤科杂志,2021,29(04):8-12.
 CHEN Kaiqi SHI Yuxiong CHEN Jingheng HE Dadong.Biomechanical Characteristics of Proximal Femoral NailAnti-Rotation for Femoral IntertrochantericFracture under the Vertical Force of Gait Cycle[J].Chinese Journal of Traditional Medical Traumatology & Orthopedics,2021,29(04):8-12.
点击复制

步态周期垂直力下股骨转子间骨折股骨近端防旋髓内钉内固定的生物力学特征()
分享到:

《中国中医骨伤科杂志》[ISSN:1005-0205/CN:42-1340/R]

卷:
第29卷
期数:
2021年04期
页码:
8-12
栏目:
实验研究
出版日期:
2021-04-15

文章信息/Info

Title:
Biomechanical Characteristics of Proximal Femoral NailAnti-Rotation for Femoral IntertrochantericFracture under the Vertical Force of Gait Cycle
文章编号:
1005-0205(2021)04-0008-05
作者:
陈凯奇1 石宇雄1△ 陈敬恒1 何达东1
1广州市番禺区中医院骨伤科(广州,511400)
Author(s):
CHEN Kaiqi1 SHI Yuxiong1△ CHEN Jingheng1 HE Dadong1
1Department of Orthopedics of Panyu District Hospital of Traditional Chinese Medicine,Guangzhou 511400,China.
关键词:
步态周期 股骨转子间骨折 股骨近端防旋髓内钉 有限元
Keywords:
gait cycle intertrochanteric fracture proximal femoral nail anti-rotation finite element
分类号:
R683.42
文献标志码:
A
摘要:
目的:仿真模拟步态周期垂直力下2018版AO31-A1.3型股骨转子间骨折股骨近端防旋髓内钉(PFNA)内固定的生物力学特征。方法:获取一名老年女性髋部骨折患者的CT资料并在Mimics中重建股骨近端三维模型,在SolidWork中构建PFNA三维模型,将股骨近端模型与PFNA模型进行装配,导出至Hypermesh进行前处理,最后导出至LS-DYNA进行求解仿真。结果:PFNA应力集中在螺旋刀片和主钉上; PFNA应力达峰后逐渐减小又逐渐增大。PFNA位移以螺旋刀片尖端的最大,达6.74 mm; 主钉次之,为1.79 mm; 尾钉的最大位移为0.83 mm。头颈骨折块成角包含了3个方向的成角,达峰后逐渐减小并维持在2.5°。股骨应力及位移主要发生在脚掌踏地相和脚尖离地相之间; 最大应力集中在头颈骨折块下内侧与股骨干相接处; 最大位移位于股骨头内侧。PFNA应力及位移主要在脚掌踏地相和脚尖离地相之间; 最大应力集中在螺旋刀片与主钉孔交界、主钉上段与下段交界处; 螺旋刀片最大位移在其尖端。结论:股骨转子间骨折PFNA内固定的应力位移变化不完全与步态周期同步,呈现一定滞后性。
Abstract:
To simulate the biomechanical characteristics of proximal femoral nail anti-rotation(PFNA)in treating A1.3 type femoral intertrochanteric fracture under the vertical force of gait cycle.Methods:The CT images of an elderly female hip fracture patient were recruited and used to reconstruct three-dimensional model of proximal femur in Mimics.The 3D model of PFNA was constructed in SolidWorkand,and these two models were assembled.Then components were exported to Hypermesh for pre-processing,and finally output for calculation in LS-DYNA.Results:The stress of PFNA was concentrated on helical blade and nail,and it gradually decreased and increased again after reaching the peak.The maximal displacement of PFNA was 6.74 mm at the tip of helical blade,then followed by nail with 1.79 mm and the locking bolt with 0.83 mm.The angle of the head-neck fragment included three directions,which gradually decreased and maintained at 2.5° after reaching the peak.The results showed that the stress and displacement of femur mainly occurred between the plantar stepping phase and the toe off phase,the maximal stress was concentrated in the joint between the medial side of head-neck fragment connect with shaft,and maximal displacement of femur head located in the medial side.The stress and displacement of PFNA mainly occurred between the plantar stepping phase and the toe off phase.The maximal stress was concentrated at the conjunction of helical blade and nail.The maximal displacement of helical blade located on the tip.Conclusion:The changes of stress and displacement of PFNA and femoral in intertrochanteric fracture are not completely synchronized with the gait cycle,which shows a certain lag.

参考文献/References:

[1] 王炎,汪海滨,史法见,等.PFNA和DHS固定治疗股骨粗隆间骨折的比较[J].中国矫形外科杂志,2019,27(24):2223-2227.
[2] 饶根云,樊天右,谢友军.髓内固定系统与关节置换术治疗老年骨质疏松性股骨粗隆间骨折的效果比较[J].中国中医骨伤科杂志,2019,27(10):43-47.
[3] 李建涛,张里程,唐佩福.股骨粗隆间骨折治疗理念与内固定器械的发展概述[J].中国修复重建外科杂志,2019,33(1):1-7.
[4] 周钰卓,齐宇新,马腾洋,等.老年股骨粗隆间骨折PFNA失败的危险因素分析[J].中国矫形外科杂志,2020,28(4):292-296.
[5] 周君,李盛华,周明旺,等.股骨近端抗旋髓内钉(PFNA)治疗股骨粗隆间骨折失败原因研究综述[J].中国中医骨伤科杂志,2017,25(9):80-82.
[6] 林梓凌,李鹏飞,庞智晖,等.骨密度与老年髋部骨折股骨近端三维有限元模型密度的关系[J].中国老年学杂志,2015,35(11):3069-3070.
[7] LOTZ J C,GERHART T N,HAYES W C.Mechanical properties of trabecular bone from the proximal femur:a quantitative CT study[J].Journal of Computer Assisted Tomography,1990,14(1):107-114.
[8] LOTZ J C,GERHART T N,HAYES W C.Mechanical properties of metaphyseal bone in the proximal femur[J].Journal of Biomechanics,1991,24(5):317-329.
[9] EBERLE S,GERBER C,VON OLDENBURG G,et al.Type of hip fracture determines load share in intramedullary osteosynthesis[J].Clinical Orthopaedics and Related Research,2009,467(8):1972-1980.
[10] NUNO N,AMABILI M,GROPPETTI R,et al.Static coefficient of friction between Ti-6Al-4V and PMMA for cemented hip and knee implants[J].Journal of Biomedical Materials Research,2002,59(1):191-200.
[11] MORGAN E F,KEAVENY T M.Dependence of yield strain of human trabecular bone on anatomic site[J].Journal of Biomechanics,2001,34:569-577.
[12] MA Z,CHEN J,LAN F.Biomechanical response and injury of occupant’s pelvis in side impacts:effects of the femoral head and loading conditions[J].Journal of Mechanics in Medicine and Biology,2014,14(6):1440001.
[13] SHIBO G,XUANHUI Q,XINBO H,et al.Powder injection molding of Ti-6Al-4V alloy[J].Journal of Materials Processing Technology,2006,173(3):310-314.
[14] NIINOMI M.Mechanical properties of biomedical titanium alloys[J].Materials Science and Engineering:A,1998,243(1):231-236.
[15] CARNEY K S,PEREIRA J M,REVILOCK D M,et al.Jet engine fan blade containment using an alternate geometry[J].International Journal of Impact Engineering,2009,36(5):720-728.
[16] HELGASON B,VICECONTI M,RúNARSSON T P,et al.On the mechanical stability of porous coated press fit titanium implants:a finite element study of a pushout test[J].Journal of Biomechanics,2008,41(8):1675-1681.
[17] BOBBILI R,RAMAKRISHNA B,MADHU V.Dynamic compressive behavior and fracture modeling of Titanium alloy IMI 834[J].Journal of Alloys and Compounds,2017,714:225-231.
[18] PEDERSEN D R,BRAND R A,DAVY D T.Pelvic muscle and acetabular contact forces during gait[J].Journal of Biomechanics,1997,30(9):959-965.
[19] 冯敏,从曙光,郑百林.人工髋骨接触状态仿真[J].计算机辅助工程,2014,23(3):69-72.
[20] 蔡跃波,吴春辉,李建赤,等.股骨粗隆间骨折前倾角改变对步态的影响[J].中华关节外科杂志(电子版),2017,11(2):135-140.
[21] 王爱国,郑昆仑,张荣位,等.股骨粗隆间骨折术后步行状态的生物力学特性[J].中国中西医结合外科杂志,2019,25(5):754-759.
[22] NODA M,NAKAMURA Y,ADACHI K,et al.Dynamic finite element analysis of implants for femoral neck fractures simulating walking[J].Journal of Orthopaedic Surgery,2018,26(2):920437277.
[23] 高耀东,段宇星,郭鹏年.基于髋关节CT图像三维实体髋骨重建及髋骨承受力数据有限元分析[J].中国组织工程研究,2019,23(28):4564-4569.
[24] 李兴,王洪福,罗伟,等.基于术后髋骨CT数据重建个性化骨肌多体动力学模型及步态仿真[J].中国组织工程研究,2017,21(35):5685-5690.
[25] 杨挺,郑建河,姚子龙,等.行走中股骨生物力学特性的有限元分析[J].广东医学,2016,37(4):512-515.
[26] 黄萍,钟慧敏,陈博,等.正常青年人三维步态:时空及运动学和运动力学参数分析[J].中国组织工程研究,2015,19(24):3882-3888.
[27] 叶思航,谢叻,王海鹏,等.基于3维动作捕捉的下肢骨折术后步态分析[J].江西师范大学学报(自然科学版),2018,42(5):507-511.

备注/Memo

备注/Memo:
基金项目:2019年度广东省中医药局中医药科研项目(20191263)
通信作者 E-mail:shiyuxiong10@sina.com
更新日期/Last Update: 2021-04-15