[1]何海军,陈卫衡△,鲁超,等.基于CT图像建立可供动态力学模拟分析的股骨头坏死有限元模型[J].中国中医骨伤科杂志,2016,24(09):5-10.
 HE Haijun,CHEN Weiheng,LU Chao,et al.Setting Up Finite Element Model for Dynamic Mechanical Analysis of Osteonecrosis of the Femoral Head Based on CT Images[J].Chinese Journal of Traditional Medical Traumatology & Orthopedics,2016,24(09):5-10.
点击复制

基于CT图像建立可供动态力学模拟分析的股骨头坏死有限元模型
分享到:

《中国中医骨伤科杂志》[ISSN:1005-0205/CN:42-1340/R]

卷:
第24卷
期数:
2016年09期
页码:
5-10
栏目:
临床研究
出版日期:
2016-09-01

文章信息/Info

Title:
Setting Up Finite Element Model for Dynamic Mechanical Analysis of Osteonecrosis of the Femoral Head Based on CT Images
文章编号:
1005-0205(2016)09-0005-06
作者:
何海军1 陈卫衡1△ 鲁超1 唐琪2 王荣田1 陈志伟1 李泰贤1
1.中国中医科学院望京医院(北京,100102)
2.北京理工大学生命学院
△.通信作者 E-mail:drchenweiheng@163.com
Author(s):
HE Haijun1 CHEN Weiheng1△ LU Chao1 TANG Qi2 WANG Rongtian1 CHEN Zhiwei1 LI Taixian1
1.Wangjing Hospital of China Academy of Chinese Medical Sciences,Beijing 100102,China;
2.School of Life Science of Beijing Institute of Technology,Beijing 100081,China.
关键词:
股骨头坏死 有限元模型 生物力学 股骨头塌陷 CT图像
Keywords:
osteonecrosis of the femoral head finite element model biomechanical collapse CT images
分类号:
R681.8
文献标志码:
A
摘要:
目的:建立股骨头坏死的有限元模型,分析股骨头坏死的内部应力分布及力学特征,为股骨头坏死塌陷的预防提供生物力学依据。方法:选取标准成年男性左侧股骨头坏死自愿者1例,采用16排螺旋CT对患者双髋关节进行扫描,获得DICOM3.0格式的股骨头图像原始数据,利用Amira软件、Geomagic Studio软件、Ansys软件,建立坏死股头与正常股骨头有限元模型,分析慢步走时坏死股骨头与正常股骨头不同部位及不同骨质的力学特征。结果:建立坏死股骨头和正常股骨头三维有限元模型,分别根据是否区分皮质骨和松质骨,划分其总体节点数和单元数,并针对不区分和区分松质骨及密质骨的两类模型,分别计算总网格数为4 513 322和3 132 783的加密网格模型,二者在等效应力分布上趋势一致,最大等效应力相差4.3%.坏死股骨头模型最大应力值均小于正常股骨头模型,尤其是在区分松、密质骨时更为明显,最大应力值从52.110 3 MPa降低到30.106 9 MPa; 坏死股骨头模型的最大位移值为1.006 9 mm,明显大于正常股骨头模型的0.583 6 mm.结论:建立了较好几何和物理相似性的、可重复应用、可供动态力学模拟分析的股骨头坏死有限元模型,相比正常股骨头建模,股骨头坏死模型建立时,将松质骨和皮质骨材料区分赋值更有必要。
Abstract:
Objective:To establish the finite element model of osteonecrosis of the femoral head(ONFH),and to analysis of internal stress distribution and mechanical features on ONFH,in order to provide biomechanical basis for prevention collapse of ONFH. Methods:Choosing one adult male volunteers with left ONFH and scanning bilateral hip joints of patients by using of GE Bright speed of 16-detector row spiral CT,to access original data of DICOM 3.0 ONFH and normal femoral head. Then the finite element model of normal femoral head and necrosis femoral head were established by Amira image analysis software,Geomagic Studio reverse engineering software,and Ansys finite element analysis software. The mechanical characteristics of normal femoral head and ONFH in different parts,and different bone on walking were analyzed. Results:Establishment three-dimension finite element mode of normal femoral head and necrosis femoral head,in different finite element model,to divides the total number of nodes and the number of units. Based on the sensitivity of cortical bone and cancellous bone,distinguish between two kind's model of spongy bone and compact bone,and calculated total number of grid 4 513 322 and mesh model 3 132 783. They were the similar on the equivalent stress distribution,and the difference between maximum equivalent stress is 4.3%. Maximum stress values of the necrosis femoral head model were less than the normal model,especially when loose,cortical bone scattering. Maximum stress was reduced from 52.110 3 MPa to 30.106 9 MPa. When loose,cortical bone ached,the model of the necrosis femoral head has a maximum displacement 1.006 9 mm,significantly larger than the normal model of femoral head 0.583 6 mm. Indirectly show the fact that necrotic bone has more collapse risk on the identical mechanical load. Conclusions:We develop an ONFH finite element model with good similarities on geometry and physical,repeatability and available for dynamic mechanical analysis. Compared with the model of health femoral head,when establishing the mechanical model of the proximal femur with ONFH,it is necessary to individually assign the material properties for the cortical and cancellous bone respectively.

参考文献/References:

[1] Kabel J,van Rietbergen B,Dalstra M,et al.The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone[J].J Biomech,1999,32(7):673-680.
[2] Volokh KY,Yoshida H,Leali A,et al.Prediction of femoral head collapse in osteonecrosis[J].J Biomech Eng,2006,128(3):467-470.
[3] Brown TD,Hild GL.Pre-collapse stress redistributions in femoral head osteonecrosis-a three-dimensional finite element analysis[J].J Biomech Eng,1983,105(2):171-176.
[4] Brown TD,Way ME,Ferguson AJ.Mechanical characteristics of bone in femoral capital aseptic necrosis[J].Clin Orthop Relat Res,1981(156):240-247.
[5] Lee MS,Tai CL,Senan V,et al.The effect of necrotic lesion size and rotational degree on the stress reduction in transtrochanteric rotational osteotomy for femoral head osteonecrosis-a three-dimensional finite-element simulation[J].Clin Biomech(Bristol,Avon),2006,21(9):969-976.
[6] Brown TD,Ferguson AJ.Mechanical property distributions in the cancellous bone of the human proximal femur[J].Acta Orthop Scand,1980,51(3):429-437.
[7] Brown TD,Pedersen DR,Baker KJ,et al.Mechanical consequences of core drilling and bone-grafting on osteonecrosis of the femoral head[J].J Bone Joint Surg Am,1993,75(9):1358-1367.
[8] 何海军,陈卫衡,王荣田,等.股骨头坏死患者生存质量评价及多途径中药治疗临床研究[J].中国中医骨伤科杂志,2010,18(10):13-15.
[9] 陈卫衡,周宇,何海军,等.健脾活骨方治疗早中期非创伤性股骨头坏死的前瞻性临床研究[J].中华关节外科杂志:电子版,2013,7(3):287-293.
[10] Amanatullah DF,Strauss EJ,Di Cesare PE.Current managementoptions for osteonecrosis of the femoralhead:part1,diagnosisand nonoperative management [J].Am J Orthop(Belle Mead NJ),2011,40(9):186-192.
[11] Anderson AE,Ellis BJ,Maas SA,et al.Validation of finite element predictions of cartilage contact pressure in the human hip joint[J].J Biomech Eng,2008,130(5):51008.
[12] Shim VB,Pitto RP,Streicher RM,et al.The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis[J].J Biomech,2007,40(1):26-35.
[13] Anderson AE,Peters CL,Tuttle BD,et al.Subject-specific finite element model of the pelvis:development,validation and sensitivity studies[J].J Biomech Eng,2005,127(3):364-373.
[14] 孙克民,王和鸣,陈日齐.反“卓别林”步态防治股骨头坏死的三维有限元分析[J].中国中医骨伤科杂志,2006,14(2):15-17.
[15] 陈执平,齐振熙,周金水.应用三维有限元分析探讨髓芯减压术后产生的空洞对股骨头应力的影响[J].中华关节外科杂志:电子版,2009,3(5):49-52.
[16] Brown TD,Mutschler TA,Ferguson AJ.A non-linear finite element analysis of some early collapse processes in femoral head osteonecrosis[J].J Biomech,1982,15(9):705-715.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(81373801) 北京市自然科学基金资助项目(7142170)
更新日期/Last Update: 2016-09-15