[1]李昀姝,彭鹏△,张茜玥,等.载中药纳米材料促进骨与软骨修复研究进展[J].中国中医骨伤科杂志,2024,32(02):92-96.[doi:10.20085/j.cnki.issn1005-0205.240217]
 LI Yunshu PENG Peng ZHANG Xiyue ZHAO Jierui.Research Progress of Icariin-Carrying Nanomaterials Promoting Bone and Cartilage Regeneration through Tissue Engineering[J].Chinese Journal of Traditional Medical Traumatology & Orthopedics,2024,32(02):92-96.[doi:10.20085/j.cnki.issn1005-0205.240217]
点击复制

载中药纳米材料促进骨与软骨修复研究进展()
分享到:

《中国中医骨伤科杂志》[ISSN:1005-0205/CN:42-1340/R]

卷:
第32卷
期数:
2024年02期
页码:
92-96
栏目:
文献综述
出版日期:
2024-02-15

文章信息/Info

Title:
Research Progress of Icariin-Carrying Nanomaterials Promoting Bone and Cartilage Regeneration through Tissue Engineering
文章编号:
1005-0205(2024)02-0092-05
作者:
李昀姝1彭鹏2△张茜玥1赵杰瑞1
1澳门科技大学中医药学院附属珠海医院(广东 珠海,519000); 2珠海市中西医结合医院
Author(s):
LI Yunshu1 PENG Peng2△ ZHANG Xiyue1 ZHAO Jierui1
1Zhuhai Hospital of Traditional Chinese and Western Medicine,Faculty of Chinese Medicine,Macau University of Science and Technology,Zhuhai 519000,Guangdong China; 2Zhuhai Hospital of Traditional Chinese and Western Medicine,Zhuhai 519000,Guangdong China.
关键词:
载药纳米材料 淫羊藿苷 姜黄素 组织工程 骨与软骨修复 支架
Keywords:
nano-loaded drug icariin curcumin tissue engineering bone and cartilage regeneration scaffold
分类号:
R68
DOI:
10.20085/j.cnki.issn1005-0205.240217
文献标志码:
A
摘要:
骨组织工程是目前修复骨与软骨损伤的有效手段,当前有许多材料都运用于骨组织工程,纳米载药材料是其中之一。纳米载药材料颗粒直径远小于毛细血管,具有降低药物毒副作用、提高药物稳定性、缓释控释药物和药物靶向释放等优点。许多中药已被证实对促进骨与软骨再生有着重要的作用。载中药纳米材料除具有传统纳米材料的优点外,还具有促进成骨与软骨细胞再生、维持骨细胞结构、抑制炎症因子等特殊治疗能力,可以为促进骨与软骨修复提供新思路。本文总结了载中药纳米材料的主要活性成分与目前应用于组织工程的种类,以及载中药纳米材料在骨组织工程中的应用现状和发展前景。
Abstract:
Bone tissue engineering is an effective way to repair bone and cartilage damage.At present,many materials have been used in bone tissue engineering,and nano-drug loading materials are one of them.The particle diameter of nano-drug-loaded materials is much smaller than that of capillaries,which has the advantages of reducing drug toxic side effects,improving drug stability,sustained and controlled release of drugs,and targeted drug release.Many traditional Chinese medicine(TCM)molecules have been shown to play important roles in promoting bone and cartilage regeneration.In addition to the advantages of traditional nanomaterials,molecular nanomaterials loaded with TCM also have special therapeutic abilities such as promoting the regeneration of osteoblasts and chondrocytes,maintaining the structure of bone cells,and inhibiting inflammatory factors,which can provide new ideas for bone tissue engineering to promote bone and cartilage repair.This paper summarizes the major active constituent of TCM molecular nanomaterials and the types of currently used in tissue engineering,will take TCM medicine molecular nanomaterials and the prospect in the application of bone tissue engineering.

参考文献/References:

[1] MAUFFREY C,BARLOW B T,SMITH W.Management of segmental bone defects[J].J Am Acad Orthop Surg,2015,23(3):143-153.
[2] ZIMMERMANN G,MOGHADDAM A.Allograft bone matrix versus synthetic bone graft substitutes[J].Injury,2011,42(Suppl 2):S16-S21.
[3] MAIA F R,CARVALHO M R,OLIVEIRA J M,et al.Tissue engineering strategies for osteochondral repair[J].Adv Exp Med Biol,2018,1059:353-371.
[4] CHEN G Y,CHEN J Q,LIU X Y,et al.Total flavonoids of rhizoma drynariae restore the MMP/TIMP balance in models of osteoarthritis by inhibiting the activation of the NF-κB and PI3K/AKT pathways[J].Evid Based Complement Alternat Med,2021:6634837.
[5] CHEN S,LIANG H,JI Y,et al.Curcumin modulates the crosstalk between macrophages and bone mesenchymal stem cells to ameliorate osteogenesis[J].Front Cell Dev Biol,2021,9:634650.
[6] XIE F,WU C F,LAI W P,et al.The osteoprotective effect of Herba epimedii(HEP)extract in vivo and in vitro[J].Evid Based Complement Alternat Med,2005,2(3):353-361.
[7] HE C,WANG Z,SHI J.Pharmacological effects of icariin[J].Adv Pharmacol,2020,87:179-203.
[8] XIE Y,SUN W,YAN F,et al.Icariin-loaded porous scaffolds for bone regeneration through the regulation of the coupling process of osteogenesis and osteoclastic activity[J].Int J Nanomedicine,2019,14:6019-6033.
[9] LI D,YUAN T,ZHANG X,et al.Icariin:a potential promoting compound for cartilage tissue engineering[J].Osteoarthritis Cartilage,2012,20(12):1647-1656.
[10] HAO W,CHEN L,WU L F,et al.Tanshinone ⅡA exerts an antinociceptive effect in rats with cancer-induced bone pain[J].Pain Physician,2016,19(7):465-476.
[11] YIN H,GUO Q,LI X,et al.Curcumin suppresses IL-1β secretion and prevents inflammation through inhibition of the NLRP3 inflammasome[J].J Immunol,2018,200(8):2835-2846.
[12] CHEN Z,XUE J,SHEN T,et al.Curcumin alleviates glucocorticoid-induced osteoporosis by protecting osteoblasts from apoptosis in vivo and in vitro[J].Clin Exp Pharmacol Physiol,2016,43(2):268-276.
[13] 李定,李悦,黄枫,等.骨碎补总黄酮在诱导膜技术中对骨缺损区域血管形成和成骨质量的影响[J].中华中医药杂志,2019,34(11):5086-5089.
[14] 梅晓龙,张涛,陆娜.骨碎补治疗外伤性骨折作用机制的研究进展[J].现代药物与临床,2022,37(10):2386-2389.
[15] 陈玄,陈娟,谢丽华,等.骨碎补-续断药对对成骨/破骨代谢的双向调控作用及其对Hif1ɑ基因的影响[J].中国骨质疏松杂志,2023,29(1):64-69.
[16] GUO Y,LI Y,XUE L,et al.Salvia miltiorrhiza:an ancient Chinese herbal medicine as a source for anti-osteoporotic drugs[J].J Ethnopharmacol,2014,155(3):1401-1416.
[17] 张煜珅,张普华,刘鑫成,等.丹参酮ⅡA对软骨细胞去分化影响的研究[J].中国骨与关节损伤杂志,2017,32(9):942-945.
[18] 吴涛,刘英超,南开辉,等.丹参素涂层β-磷酸三钙支架材料的制备与细胞相容性[J].中国组织工程研究,2017,21(14):2247-2253.
[19] LI J,SHENG H,WANG Y,et al.Scaffold hybrid of the natural product tanshinone I with piperidine for the discovery of a potent NLRP3 inflammasome inhibitor[J].J Med Chem,2023,66(4):2946-2963.
[20] AGARWAL R,GARCIA A J.Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair[J].Adv Drug Deliv Rev,2015,94:53-62.
[21] SHI G,YANG C,WANG Q,et al.Traditional Chinese medicine compound-loaded materials in bone regeneration[J].Front Bioeng Biotechnol,2022,10:851561.
[22] 汪珏,郑林峰,徐进,等.骨碎补总黄酮对IL-1β诱导体外软骨细胞损伤的保护作用[J].中国现代应用药学,2021,38(12):1441-1447.
[23] KIM H H,KIM J H,KWAK H B,et al.Inhibition of osteoclast differentiation and bone resorption by tanshinone ⅡA isolated from Salvia miltiorrhiza Bunge[J].Biochem Pharmacol,2004,67(9):1647-1656.
[24] FENG T,WEI Y,LEE R J,et al.Liposomal curcumin and its application in cancer[J].Int J Nanomedicine,2017,12:6027-6044.
[25] KARBOWNICZEK J E,BERNIAK K,KNAPCZYK-KORCZAK J,et al.Strategies of nanoparticles integration in polymer fibers to achieve antibacterial effect and enhance cell proliferation with collagen production in tissue engineering scaffolds[J].J Colloid Interface Sci,2023,650(Pt B):1371-1381.
[26] 李慧娟,王先流,沈炎冰,等.负载淫羊藿苷的壳聚糖基仿生支架的促软骨形成和炎症缓解作用[J].生物工程学报,2022,38(6):2308-2321.
[27] ZHAO H,TANG J,ZHOU D,et al.Electrospun icariin-loaded core-shell collagen,polycaprolactone,hydroxyapatite composite scaffolds for the repair of rabbit tibia bone defects[J].Int J Nanomedicine,2020,15:3039-3056.
[28] ZHAO C F,LI Z H,LI S J,et al.PLGA scaffold carrying icariin to inhibit the progression of osteoarthritis in rabbits[J].R Soc Open Sci,2019,6(4):181877.
[29] ZHOU L,HUANG Z,YANG S,et al.Preparation of ICA-loaded mPEG-ICA nanoparticles and their application in the treatment of LPS-induced H9c2 cell damage[J].Nanoscale Res Lett,2021,16(1):155.
[30] XU Z M,SUN Y D,DAI H Y,et al.Engineered 3D-printed polyvinyl alcohol scaffolds incorporating β-tricalcium phosphate and icariin induce bone regeneration in rat skull defect model[J].Molecules,2022,27(14):4535.
[31] 于洋,宋永才,杨立峰.复合骨碎补总黄酮的丝素蛋白/壳聚糖支架在兔关节软骨损伤中的应用研究[J].中国临床解剖学杂志,2022,40(6):696-703.
[32] 申震,郭英,姜自伟,等.基于骨组织工程技术比较骨碎补总黄酮两种给药方式修复大鼠大段骨缺损模型的效果[J].中国组织工程研究,2022,26(27):4346-4352.
[33] LV L,CHENG W,WANG S,et al.Poly(β-amino ester)dual-drug-loaded hydrogels with antibacterial and osteogenic properties for bone repair[J].ACS Biomater Sci Eng,2023,9(4):1976-1990.
[34] KIM E C,YOON S J,NOH K,et al.Dual effect of curcumin/BMP-2 loaded in HA/PLL hydrogels on osteogenesis in vitro and in vivo[J].J Nanosci Nanotechnol,2017,17(1):143-152.
[35] SARKAR N,BOSE S.Liposome-encapsulated curcumin-loaded 3D printed scaffold for bone tissue engineering[J].ACS Appl Mater Interfaces,2019,11(19):17184-17192.
[36] DOUSTDAR F,OLAD A,GHORBANI M.Development of a novel reinforced scaffold based on chitosan/cellulose nanocrystals/halloysite nanotubes for curcumin delivery[J].Carbohydr Polym,2022,282:119127.
[37] TRUITE C V R,NORONHA J N G,PRADO G C,et al.Bioperformance studies of biphasic calcium phosphate scaffolds extracted from fish bones impregnated with free curcumin and complexed with β-cyclodextrin in bone regeneration[J].Biomolecules,2022,12(3):383.
[38] CHEN W,XU Y,LI H,et al.Tanshinone ⅡA delivery silk fibroin scaffolds significantly enhance articular cartilage defect repairing via promoting cartilage regeneration[J].ACS Appl Mater Interfaces,2020,12(19):21470-21480.
[39] NASCIMENTO M L,ARAUJO E S,CORDEIRO E R,et al.A literature investigation about electrospinning and nanofibers:historical trends,current status and future challenges[J].Recent Pat Nanotechnol,2015,9(2):76-85.
[40] LIU H,WEN W,CHEN S,et al.Preparation of icariin and deferoxamine functionalized poly(l-lactide)/chitosan micro/nanofibrous membranes with synergistic enhanced osteogenesis and angiogenesis[J].ACS Appl Bio Mater,2018,1(2):389-402.
[41] GONG M,CHI C,YE J,et al.Icariin-loaded electrospun PCL/gelatin nanofiber membrane as potential artificial periosteum[J].Colloids Surf B Biointerfaces,2018,170:201-209.
[42] GONG M,HUANG C,HUANG Y,et al.Core-sheath micro/nano fiber membrane with antibacterial and osteogenic dual functions as biomimetic artificial periosteum for bone regeneration applications[J].Nanomedicine,2019,17:124-136.
[43] AYTAC Z,UYAR T.Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid:enhanced water solubility and slow release of curcumin[J].Int J Pharm,2017,518(1/2):177-184.
[44] AL-BISHARI A M,AL-SHAAOBI B A,AL-BISHARI A A,et al.Vitamin D and curcumin-loaded PCL nanofibrous for engineering osteogenesis and immunomodulatory scaffold[J].Front Bioeng Biotechnol,2022,10:975431.
[45] 李鑫,张伟,张彩云,等.丹参酮ⅡA/玉米醇溶蛋白纳米复合纤维膜的制备和性能研究[J].中国新药杂志,2015,24(3):331-336.

备注/Memo

备注/Memo:
基金项目:广东省医学科学技术研究基金项目(A2021004)
通信作者 E-mail:buyrshan85446@163.com
更新日期/Last Update: 2024-02-15