[1]于潇 马勇△ 郭杨 潘娅岚 涂鹏程 过俊杰.丝素支架应用于骨组织工程的研究进展[J].中国中医骨伤科杂志,2021,29(05):84-88.
点击复制

丝素支架应用于骨组织工程的研究进展()
分享到:

《中国中医骨伤科杂志》[ISSN:1005-0205/CN:42-1340/R]

卷:
第29卷
期数:
2021年05期
页码:
84-88
栏目:
文献综述
出版日期:
2021-05-15

文章信息/Info

文章编号:
1005-0205(2021)05-0084-05
作者:
于潇123 马勇123△ 郭杨23 潘娅岚23 涂鹏程23 过俊杰23
1南京中医药大学附属医院骨伤科(南京,210023)2南京中医药大学骨伤研究所3南京中医药大学骨伤修复与重建新技术实验室
关键词:
丝素蛋白 组织工程支架 骨组织工程 免疫微环境
分类号:
R318.08; R68
文献标志码:
A

参考文献/References:

[1] KOH L D,CHENG Y,TENG C P,et al.Structures,mechanical properties and applications of silk fibroin materials[J]. Prog Polym Sci,2015,46(7):86-110.
[2] LI J,ZHOU Y,CHEN W,et al.A novel 3D in vitro tumor model based on silk fibroin/chitosan scaffolds to mimic the tumor microenvironment[J].ACS Appl Mater Interfaces,2018,10(43):36641-36651.
[3] WANG X,LI Y,LIU Q,et al.In vivo effects of metal ions on conformation and mechanical performance of silkworm silks[J].Biochim Biophys Acta Gen Subj,2017,1861(3):567-576.
[4] GUO K,DONG Z,ZHANG Y,et al.Improved strength of silk fibers in Bombyx mori trimolters induced by an anti-juvenile hormone compound[J].Biochim Biophys Acta Gen Subj,2018,1862(5):1148-1156.
[5] KUNDU B,RAJKHOWA R,KUNDU S C,et al.Silk fibroin biomaterials for tissue erations[J].Adv Drug Deliv Rev,2013,65(4):457-470.
[6] DEBARI M K,ABBOTT R D.Microscopic considerations for optimizing silk biomaterials[J].Wiley Interdiscip Rev Nanomed Nanobiotechnol,2019,11(2):e1534.
[7] LU Q,ZHANG B,LI M,et al.Degradation mechanism and control of silk fibroin[J].Biomacromolecules,2011,12(4):1080-1086.
[8] WANG Y,RUDYM D D,WALSH A,et al.In vivo degradation of three-dimensional silk fibroin scaffolds[J].Biomaterials,2008,29(24/25):3415-3428.
[9] ZHANG W,CHEN L,CHEN J,et al.Silk fibroin biomaterial shows safe and effective wound healing in animal models and a randomized controlled clinical trial[J].Adv Healthc Mater,2017,6(10).DOI:10.1002/adhm.201700 121.
[10] ASAKURA T,MATSUDA H,NAITO A.Acetylation of Bombyx mori silk fibroin and their characterization in the dry and hydrated states using 13C solid-state NMR[J].Int J Biol Macromol,2020,155:1410-1419.
[11] JO Y Y,KWEON H,KIM D W,et al.Accelerated biodegradation of silk sutures through matrix metalloproteinase activation by incorporating 4-hexylresorcinol[J].Sci Rep,2017,7:42441.
[12] KARAGEORGIOU V,KAPLAN D.Porosity of 3D biomaterial scaffolds and osteogenesis[J].Biomaterials,2005,26(27):5474-5491.
[13] ZHANG Y,XIAO Y.The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of BMP7-expressing mesenchymal stem cells[J].Acta Biomaterialia,2010,6(8):3021-3028.
[14] HURI P Y,OZILGEN B A,HUTTON D L,et al.Scaffold pore size modulates in vitro osteogenesis of human adipose-derived stem/stromal cells[J].Biomed Mater,2014,9(4):045003.
[15] KLINGE U,KLOSTERHALFEN B,BIRKENHAUER V,et al.Impact of polymer pore size on the interface scar formation in a rat model[J].J Surg Res,2002,103(2):208-214.
[16] GARG K,PULLEN N A,OSKERITZIAN C A,et al.Macrophage functional polarization(M1/M2)in response to varying fiber and pore dimensions of electrospun scaffolds[J].Biomaterials,2013,34(18):4439-4451.
[17] MADDEN L R,MORTISEN D J,SUSSMAN E M,et al.Proangiogenic scaffolds as functional templates for cardiac tissue engineering[J].Proc Natl Acad Sci U S A,2010,107(34):15211-15216.
[18] TANG J,GU Y,ZHANG H,et al. Outer-inner dual reinforced micro/nano hierarchical scaffolds for promoting osteogenesis[J].Nanoscale,2019,11(34):15794-15803.
[19] DZIKI J L,WANG D S,PINEDA C,et al.Solubilized extracellular matrix bioscaffolds derived from diverse source tissues differentially influence macrophage phenotype[J].J Biomed Mater Res A,2017,105(1):138-147.
[20] ZHANG X Y,CHEN Y P,HAN J,et al.Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering[J].Int J Biol Macromol,2019,136:1247-1257.
[21] CORREIA C,BHUMIRATANA S,YAN L P,et al.Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells[J].Acta Biomaterialia,2012,8(7):2483-3492.
[22] WANG Q,CHU Y,HE J,et al.A graded graphene oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering[J].Materials Science and Engineering:C,2017,80:232-242.
[23] FAN L,LI J L,CAI Z,et al.Creating biomimetic anisotropic architectures with Co-Aligned nanofibers and macrochannels by manipulating ice crystallization[J].ACS Nano,2018,12(6):5780-5790.
[24] GOKILA S,GOMATHI T,VIJAYALAKSHMI K,et al.Development of 3D scaffolds using nanochitosan/silk-fibroin/hyaluronic acid biomaterials for tissue engineering applications[J].International Journal of Biological Macromolecules,2018,120(Part A):876-885.
[25] SUNTIVICH R,DRACHUK I,CALABRESE R,et al.Inkjet printing of silk nest arrays for cell hosting[J].Biomacromolecules,2014,15(4):1428-1435.
[26] HONG H,SEO Y B,KIM D Y,et al.Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering[J].Biomaterials,2020,232:119679.
[27] KIM S H,YEON Y K,LEE J M,et al.Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing[J].Nat Commun,2018,9(1):1620.
[28] HODGKINSON T,CHEN Y,BAYAT A,et al.Rheology and electrospinning of regenerated bombyx mori silk fibroin aqueous solutions[J].Biomacromolecules,2014,15(4):1288-1298.
[29] KOPP A,SMEETS R,GOSAU M,et al.Effect of process parameters on additive-free electrospinning of regenerated silk fibroin nonwovens[J].Bioact Mater,2020,5(2):241-252.
[30] KIM O H,YOON O J,LEE H J.Silk fibroin scaffolds potentiate immunomodulatory function of human mesenchymal stromal cells[J].Biochem Biophys Res Commun,2019,519(2):323-329.
[31] GAO Y,SHAO W,QIAN W,et al.Biomineralized poly(l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering[J].Mater Sci Eng C:Mater Biol Appl,2018,84:195-207.
[32] SER?DIO R,SCHICKERT SL,COSTA-PINTO A R,et al.Ultrasound sonication prior to electrospinning tailors silk fibroin/PEO membranes for periodontal regeneration[J].Mater Sci Eng C Mater Biol Appl,2019,98:969-981.
[33] JO Y Y,KWEON H,KIM D W,et al.Bone regeneration is associated with the concentration of tumour necrosis factor-α induced by sericin released from a silk mat[J].Sci Rep,2017,7(1):15589.
[34] SONG J Y,KIM S G,PARK N R,et al.Porcine bone incorporated with 4-Hexylresorcinol increases new bone formation by suppression of the nuclear factor κb signaling pathway[J].J Craniofac Surg,2018,29(7):1983-1990.
[35] SIAVASHANI A Z,MOHAMMADI J,ROTTMAR M,et al.Silk fibroin/sericin 3D sponges:The effect of sericin on structural and biological properties of fibroin[J].Int J Biol Macromol,2020,153:317-326.
[36] RAO J,CHENG Y,LIU Y,et al.A multi-walled silk fibroin/silk sericin nerve conduit coated with poly(lactic-co-glycolic acid)sheath for peripheral nerve regeneration[J].Mater Sci Eng C:Mater Biol Appl,2017,73:319-332.
[37] GHAELI I,DE MORAES M A,BEPPU M M,et al.Phase behaviour and miscibility studies of collagen/silk fibroin macromolecular system in dilute solutions and solid state[J].Molecules,2017,22(8):1368-1375.
[38] CHEN Z,BACHHUKA A,HAN S,et al.Tuning chemistry and topography of nanoengineered surfaces to manipulate immune response for bone regeneration applications[J].ACS Nano,2017,11(5):4494-4506.
[39] AGARWAL R,GARCíA A J.Biomaterial strategies for engineering implants for enha-nced osseointegration and bone repair[J].Adv Drug Deliv Rev,2015,(94):53-62.
[40] KANG H,ZENG Y,VARGHEESE S.Functionally graded multilayer scaffolds for in vivo osteochondral tissue engineering[J].Acta Biomater,2018,78:365-377.
[41] RIBEIRO V P,ALMEIDA L R,MARTINS A R,et al.Influence of different surface modification treatments on silk biotextiles for tissue engineering applications[J].J Biomed Mater Res B:Appl Biomater,2016,104(3):496-507.
[42] MAO L,XIA L,CHANG J,et al.The synergistic effects of Sr and Si bioactive ions on osteogenesis,osteoclastogenesis and angiogenesis for osteoporotic bone regeneration[J].Acta Biomater,2017,61:217-232.
[43] LIU W,LI J,CHENG M,et al.Zinc-modified sulfonated polyetheretherketone surface with immunomodulatory function for guiding cell fate and bone regeneration[J].Adv Sci,2018,5(10):1800749.
[44] CHEN B,YOU Y,MA A,et al.Zn-Incorporated TiO2 nanotube surface improves osteogenesis ability through influencing immunomodulatory function of macrophages[J].Int J Nanomedicine,2020,15:2095-2118.
[45] HU T,XU H,WANG C,et al.Magnesium enhances the chondrogenic differentiation of mesenchymal stem cells by inhibiting activated macrophage-induced inflammation[J].Sci Rep,2018,8(1):3406.
[46] WANG L,PATHAK J L,LIANG D,et al.Fabrication and characterization of strontium-hydroxyapatite/silk fibroin biocomposite nanospheres for bone-tissue engineering applications[J].Int J Biol Macromol,2020,142:366-375.
[47] SPILLER K L,NASSIRI S,WITHEREL C E,et al.Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds[J].Biomaterials,2015,37:194-207.
[48] ZHOU F,ZHANG X,CAI D,et al.Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair[J].Acta Biomater,2017,63:64-75.
[49] LI Y M,WU J Y,JIANG J,et al.Chondroitin sulfate-polydopamine modified polyethylene terephthalate with extracellular matrix-mimetic immunoregulatory functions for osseointegration[J].J Mater Chem B,2019,7(48):7756-7770.
[50] CHEN Z,KLEIN T,MURRAY R Z,et al.Osteoimmunomodulation for the development of advanced bone biomaterials[J].Materials Today,2016,16(6):304-321.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金面上项目(81673995)江苏省研究生科研创新计划项目(KYCX17_1308)2018年地方高校国家级大学生创新训练计划项目(201810315008)
通信作者 E-mail:mayong@njucm.edu.cn
更新日期/Last Update: 2021-05-15